Nasolabial Angle 관찰을 통한 구안와사 후유증의
표정근 불균형에 대한 임상적 고찰

윤인환, 김남권
원광대학교 한의과대학 안의문과과

A Clinical Study to Observe Nasolabial Angle on Facial Palsy
Sequela by Disproportionate Muscles of Expression

In-Hwan Youn, Nam-Kwen Kim
Department of Ophthalmology Otolaryngology and
Dermatology of Oriental Medicine Wonkwang University

Objectives: Electroacupuncture has the effect of recovering paralytic nerves and muscles. To treat disproportional muscles of expression with electroacupuncture, it is essential that we know the correct point of paralytic muscle.

Methods: We investigated 20 cases of patients with facial palsy sequelae. We measured nasolabial angles, checked grade of muscle palsy, and tested ENoG.

Results: This study showed significant correlation between nasolabial angles with these muscle groups (zygomatic group I, zygomatic group II, orbicularis oris muscle).

Conclusions: Disproportional faces are fixed by muscles of expression observed in facial palsy sequelae. We can treat muscular paralysis of these muscle groups with electroacupuncture for more complete recovery.

Key Words: facial palsy, facial palsy sequelae, muscle of expression, nasolabial angle, electroacupuncture

서 론

구안와사(口脣瞼)는 한쪽 얼굴 표정근육이 마비되는 질환으로 구울게, 이후┶, 미각장, 청각과 눈을 주중으로 하는 질환이다1). 서양 의학에서는 안면신경마비에 해당하며, 안면신경은 측두골 내에 존재하는 안면신경관 속을 비교적 긴게 주행하기 때문에 다른 뇌신경에 비해 손상 받기 쉽고, 손상시 안면부의 마비를 유발하기 때문에 외관상 중요하다2). 원인으로는 두개골의 외상으로 인한 경우와, 근간성 중이염, 내이염, 추체염, 이성 대상의진 등의 감염성 질환에 의한 경우, 그리고 Bell's palsy, Melkersson's syndrome, 청신경 및 안면신경 중간 등의 비감염성 질환에 의한 경우로 분류된다3).

안면신경마비의 예후에 대해 John 등4)은 전기적 신경손상 및 변성결과에 기초하여 재활성 변황이 일어나지 않으면 86%가 완전회복된다고 하였고, 백 등5)은 불완전 마비는 95%에서 완전회복 되나 완전마비는 약 45%정도가 완전 회복을 기대할 수 없고 후유증을 남긴다고 하였으며, Peitersen...
연구방법

1. 연구대상

2007년 10월 1일 현재 OO환방병원 안이비인 후피부과에 내원하는 안면신경마비 환자 중에서, 발병한지 2개월 이상 경과하였으며 표정근 불균형이 유연적으로 관찰되는 후유증 환자 20명을 대상으로 하였다.

2. 연구방법

두부(頭部)의 근육은 피근과 절작근(咀嚼筋)의 2대군으로 나누어지며 그 가운데 피근은 안면의 복합적인 표정운동을 일으키는 점에서 표정근 또는 표정안면근 등을 부른다. 표정근은 두개 표면에서 일어나서 안면의 피부에 이르는 근으로 두개표근(額部筋), 구부(口部)와 비부(鼻部)의 근, 비부(耳部)의 근, 안부(眼部)의 근 등 4근(群)으로 배열되는 총계 약 20종의 피근의 총칭이다. 이 중 구부(口部)와 비부(鼻部)의 근육은 11종으로 각 근육의 복합적인 상호운동에 의해 움직이거나 입술 주변의 움직임에 작용한다11). Lucille Daniels의 muscle testing법을 이용한 Kim의 평가법12)에 서도 총 12종의 표정근 평가근육 중 두개표근(額部筋) 1종, 안부(眼部)의 근 3종, 구부(口部)와 비부(鼻部)의 근 8종으로 입술주변 움직임 근육의 평가 비중이 높다.

전두부는 전두부(frontalis)와 주름근(corrugator)의 움직임으로 확인할 수 있으며, 안부(眼部)는 주름근과 함께 눈살근(procerus), 눈썹근(orbicularis oculi)의 움직임으로 비교적 쉽게 움직임과 마비도를 측정할 수 있는 것에 반하여 구부(口部)와 비부(鼻部)의 경우 여러근육의 상호운동으로 인해 마비근육의 파악이 어렵다13).

본 연구에서는 외관상 쉽게 눈에 띄는 입주변의 표정근 불균형을 파악하기 위해 NA를 측정하
의외로 통청수지의 영향을 통한 구강과 인후과의 조직의 분극성에 대한 임상적 고찰 (547)

Fig. 1. Measurement of NA

1) Nasolabial angle (NA) 측정
 (1) NA에 관여하는 근육
 입은 끼어진 코와 눈으로 하는 orbicularis oris에 의해 둘러싸여 있다. 여러 근육들이 orbicularis oris에 붙어있어 입술을 움직이거나 내리고 입을 여는 역할을 한다. orbicularis oris는 구강에서 음식이나 음료를 내지 않게 하며, 말하고 사회적인 표현을 하는데 필수적인 주 위치가이다. 입술을 움직이는 근육은 zygomatic major muscle, zygomatic minor muscle, levator labii superioris, levator labii superioris alaeque nasi, levator anguli oris이다. 입술의 많은 기능은 orbicularis oris의 원형수축과 입술을 움직이는 주위 근육들의 방사선 수축간의 복잡한 조합으로 이루어진다 13).
 이러한 orbicularis oris와 주위 근육들의 복잡한 조합에 의한 운동은 NA 형성 영향의 비중을 미칠 것으로 가정하여 설계하였다.

(2) 영상계측방법
 Samsung KENOX Digimax V4를 사용하여 대상자의 정면 영상을 활용하였다. 정면과 카메라 렌즈 사이의 거리는 100cm, 바닥으로부터 렌즈 중심의 높이가 피험자의 눈동자점 위치가 되도록 하였다.

(3) 얼굴 표정
 아무런 표정을 갖지 않은 자연적인 상태와 '이' 발음을 실시하여 입 주변 근육의 움직임을 최대 로 유발시킨 후의 상태를 촬영하였다.

(4) NA 측정
 Adobe Photoshop 7.0 프로그램을 이용하여 피험자의 사진을 컴퓨터 화면상에 불러들여 측정점을 찍고 각도를 측정하였다. 수직 기준선은 양미간사이 정중양과 비주벽을 잇는 선으로 설정하였고, nasolabial fold의 상단 기준점은 nasal ala 밑단의 수평선과 nasolabial fold가 만나는 점으로 하방 기준점은 nasolabial fold가 끝나는 점으로 설정하였다(Fig. 1.)

2) Grade Check
 영상계측 당시 환자의 안전성과 마비 정도를 측정하기 위해 총괄범으로는 H-B Grade 14)를, 부위별로는 Kim 등 13)이 사용했던 방법을 이용하여 마비도를 평가하였다. 정확한 평가를 위해서 2명의 한의사가 평가하여 일치하였을 때 각 환자의 grade를 인정하였고, 기록이 일치하지 않으면 협의 후 재평가하였다.

(1) Gross scale : H-B Grade
 House JW, Brackmann DE가 1985년에 발표한 grading system으로 전체적인 안면마비와 동시에 동반증상을 한꺼번에 평가하는 총괄법이다(Table 1).
Table 1. Facial Nerve Grading Systems by House–Brackmann

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal</td>
<td>Gross: Slight weakness noticeable on close inspection may have very slight synkinesis. At rest: Normal symmetry and tone.</td>
</tr>
<tr>
<td>II</td>
<td>Mild dysfunction</td>
<td>Motion: Forehead - Moderate to good function. Eye - Complete closure with minimum effort. Mouth - slight asymmetry. Gross: Obvious but not disfiguring difference between two sides, noticeable but severe synkinesis, contracture, and/or hemifacial spasm. At rest: Normal symmetry and tone.</td>
</tr>
<tr>
<td>V</td>
<td>Severe dysfunction</td>
<td>Motion: Forehead - None. Eye - Incomplete closure. Mouth - Slight movement.</td>
</tr>
<tr>
<td>VI</td>
<td>Total paralysis</td>
<td>No movement.</td>
</tr>
</tbody>
</table>

(2) Regional scale: Kim's Grade

Lucille Daniels의 muscle testing법을 응용한 Kim의 평가법은 안면근육중 주된 작용을 하는 10군의 근육운동상태를 평가하여 Normal(정상), Grade 1(50%이하 마비), Grade 2(50%정도의 마비) 3) ENoG 검사로 각각 기록하는 부위법이다(Table 2,3).

Table 2. Facial Nerve Grading Systems by Kim

<table>
<thead>
<tr>
<th>Facial muscle</th>
<th>Stage of facial muscle paralysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontalis</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Orbicularis oculi</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Corrugator supercilii</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Procerus</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Zygomatic Group I (Zygomatic major and Levator anguli oris)</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Zygomatic Group II (Zygomatic minor and Levator labii superior)</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Orbicularis oris</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Risorius</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Depressor anguli oris</td>
<td>0 1 2 3 4</td>
</tr>
<tr>
<td>Platysma</td>
<td>0 1 2 3 4</td>
</tr>
</tbody>
</table>
Table 3. The Value Standard of Facial Muscle Paralysis by Kim

<table>
<thead>
<tr>
<th>Muscle movement</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0</td>
</tr>
<tr>
<td>Grade 1</td>
<td>1</td>
</tr>
<tr>
<td>Grade 2</td>
<td>2</td>
</tr>
<tr>
<td>Grade 3</td>
<td>3</td>
</tr>
<tr>
<td>Grade 4</td>
<td>4</td>
</tr>
</tbody>
</table>

의한 7명을 대상으로 시행하였다.

(1) ENoG 검사 실시 부위
Nasolabial angle에 관여하는 근육을 분석하기 위해 입 주변 근육의 해부학적 위치와, 근전도 검사 상 가능한 부작용을 고려하여 다음과 같은 측정점을 설정하였다(Fig. 2).

① Nasal Alae
양쪽 비늘부 중앙에 전극을 부착하여 검사하였다.
관찰 근육은 Levator labii superioris alaeque nasi m.이다.

② Nasolabial Fold
nasolabial fold의 상하방 기준점에 전극을 부착하여 검사하였다. 상방 기준점은 nasal ala 밑단의 수평선과 nasolabial fold가 만나는 점으로, 하방 기준점은 nasolabial fold가 끝나는 점으로 설정하였다.
관찰근육은 zygomatic Major and Levator anguli oris m., zygomatic Minor and Levator labii superioris m.이다.

③ Mouth
인중과 입술이 닫는 교차점과 마비 측 구각을 잇는 가상의 선 중간의 입술 및 부분의 피부를 부착점으로 설정하여 검사하였다.
관찰근육은 Obicularis oris이다.

3. 통계학적 분석

대상자의 일반적 특성을 블도와 백분율을 구하는 블도분석을 실시하였다. 이환기간, H-B Grade, ENoG와 NA간의 관계는 Pearson의 상관분석을 이용하였다. Kim's Grade의 개별근육과 NA의 차이는 독립표본 T 검정을 실시하였으며, 각 근육 별 마비도 차이가 NA에 미치는 영향은 회귀분석을 이용하였다. 모든 통계분석은 SPSS 14.0을 이용하여 분석하였다.

연구결과

1. 남녀별, 연령별 분포

대상자 전체 20명의 성별분포는 남자 7명(35%),
여자 13명(65%)이었으며, 연령별 분포는 20대가 1명(5%), 30대가 4명(20%), 40대가 8명(40%), 50대가 3명(15%), 60대 이상이 4명(20%)으로 나타났다(Table 4).

2. 유병기간별 분포

언천신경마비로 치료중인 환자 중 발병 2개월 이상 경과되었으며, 표정근 불균형이 육안적으로 관찰되는 대상자 20명 중 이환기간이 2개월 이상~3개월 미만인 경우 6명(30%), 3개월 이상~6개월 미만인 경우 3명(15%), 6개월 이상~12개월 미만인 경우 5명(25%), 12개월 이상~24개월 미만인 경우 3명(15%), 24개월 이상인 경우 3명(15%)으로 나타났다(Table 5).

3. Nasolabial angle(NA) 측정 결과

orbicularis oris의 원형수축과 입술을 올리고 내리는 주위 근육들의 방사형 수축간의 복잡한 조합으로 입 주변의 표정이 결정되며(3), 이는 NA 형성에 중요한 요인으로 볼 수 있다. 무표정 상태에서 대상자의 NA 측정 결과 총 20명중 마비측이 정상측보다 각각 큰 경우가 7명(35%), 정상측

Table 4. The Spread of Patients

<table>
<thead>
<tr>
<th>Sex</th>
<th>Frequency(persons)</th>
<th>Percentage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>Woman</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>20~29</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>30~39</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>40~49</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>50~59</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>60~</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 5. The Treatment Period of Patients

<table>
<thead>
<tr>
<th>Treatment period(months)</th>
<th>Frequency(persons)</th>
<th>Percentage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2~3</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>3~6</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>6~12</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>12~24</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>24~</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 6. The Results of NA

<table>
<thead>
<tr>
<th>Expressionless face</th>
<th>Frequency (persons)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal side < abnormal side</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>normal side > abnormal side</td>
<td>11</td>
<td>55</td>
</tr>
<tr>
<td>normal side = abnormal side</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression face</th>
<th>Frequency (persons)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal side < abnormal side</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>normal side > abnormal side</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>normal side = abnormal side</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>
이 마비측보다 각이 큰 경우가 11명(55%), 마바
측과 정상측의 각이 같은 경우가 2명(10%)이었
다. ‘이’발음을 실시하여 NA 주변 근육의 움직임
을 유발시킨 후 측정한 결과에서는 총 20명중 마
비측이 정상측보다 각이 큰 경우가 7명(35%), 정
상측이 마비측보다 각이 큰 경우가 10명(50%),
마비측과 정상측의 각이 같은 경우가 3명(15%)이
있다(Table 6).

4. Grade check 결과

H-B Grade는 전체적인 안면마비와 이차적 동
반증상을 동시에 평가하는 총괄범역으로, 간편하고
환자상태 파악이 쉽다는 장점이 있는 반면에 전
반적으로 미세한 변화의 표현이 어렵다는 단점이
있다9).

Kim's Grade는 Lucille Daniels의 muscle testing
법을 응용한 평가법으로 안면근육중 주된 작용을
하는 10군의 근육운동상태를 평가하여 각각의 마
비정도를 평가한 뒤 전체적인 동급으로 환산하는
부위법이다. 정량적이고 객관적인 장점이 있는 반
면 복잡하고 평가하는데 시간이 많이 걸린다는
단점이 있다12).

H-B Grade 측정결과 총 20명 중 I단계가 1명
(5%), II단계가 13명(65%), III단계가 6명(30%),
IV~VI단계는 0명(0%)이었다(Table 7).

Kim's Grade는 총점 40점 중 1~22점의 분포
을 보였으며, 전체 마비도는 17%였다. 이 중 NA
형성에 영향을 주는 근육군의 마비도는 28.75%
로 나머지 근육군의 마비도 13.33%보다 높았다.
Kim's Grade 중 NA형성에 영향을 주는 근육군은
Zygomatic Group I , Zygomatic Group II, Orbici-
laris oris muscle이다(Table 8).

<table>
<thead>
<tr>
<th>Grade</th>
<th>Frequency (persons)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (Normal)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>II (Mild dysfunction)</td>
<td>13</td>
<td>65</td>
</tr>
<tr>
<td>III (Moderate dysfunction)</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>IV (Moderately severe dysfunction)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V (Severe dysfunction)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VI (Total paralysis)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kim's Grade</th>
<th>Score</th>
<th>Percentage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total muscles</td>
<td>6.80</td>
<td>17</td>
</tr>
<tr>
<td>Concerned muscles with NA*</td>
<td>3.6</td>
<td>28.75</td>
</tr>
<tr>
<td>Not concerned muscles with NA</td>
<td>3.2</td>
<td>13.33</td>
</tr>
</tbody>
</table>

Concerned muscles with NA*: Zygomatic major muscle and Levator anguli oris, Zygomatic minor muscle and Levator labii superior, Orbicularis oris muscle
Table 9. The Results of ENoG

<table>
<thead>
<tr>
<th>Point</th>
<th>Mean of recovery(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal alae</td>
<td>41.29</td>
</tr>
<tr>
<td>ENoG</td>
<td></td>
</tr>
<tr>
<td>Nasolabial fold</td>
<td>60.14</td>
</tr>
<tr>
<td>Orbicularis oris</td>
<td>53.29</td>
</tr>
</tbody>
</table>

Table 10. The Correlation between Disease Period with NA

<table>
<thead>
<tr>
<th>NA(Nasolabial Angle)</th>
<th>Expressionless face</th>
<th>Expression face</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal side</td>
<td>Abnormal side</td>
</tr>
<tr>
<td>Disease Period</td>
<td>0.221</td>
<td>0.210</td>
</tr>
</tbody>
</table>

5. ENoG 측정 결과

총 20명의 대상자 중 ENoG 검사에 동의한 7 명에게 시행하였으며, NA에 관여하는 근육을 분석하기 위해 입 주변 근육의 해부학적 위치와 근전도 검사상 가능한 부착부위를 고려하여 nasal alae, nasolabial fold, orbicularis oris 등 세 곳의 측정점에서 검사하였다.

ENoG는 전지과 환측의 evoked summatting potential amplitude의 상하단간 강도를 측정하여 양측 차이의 백분율을 변형된 신경섬유의 %로 판독하며, 이 백분율은 손상된 신경에서의 변형된 삼유 수와 비례한다[15].

ENoG 측정결과 nasal alae 지점 회복율 평균은 41.29%, nasolabial fold 지점 회복율 평균은 60.14 %, orbicularis oris 지점 회복율 평균은 53.29%였 다(Table 9).

6. 유병기간과 NA의 비교

앞면마비 발생시점에서 시간이 경과할수록 NA 가 증가하게 변하는지 확인하기 위해 유병기간과

Table 11. The Correlation between H-B Grade with NA

<table>
<thead>
<tr>
<th>NA(Nasolabial Angle)</th>
<th>Grade</th>
<th>M i)</th>
<th>SD ii)</th>
<th>T iii)</th>
<th>p iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
<td>29.15</td>
<td>4.54</td>
<td>-.637</td>
<td>.532</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>30.67</td>
<td>5.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expressionless face</td>
<td>Abnormal side</td>
<td>II</td>
<td>30.46</td>
<td>3.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>31.33</td>
<td>6.02</td>
<td>-.385</td>
<td>.705</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>1.31</td>
<td>5.63</td>
<td>.217</td>
<td>.831</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0.67</td>
<td>6.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>34.54</td>
<td>6.57</td>
<td>.278</td>
<td>.784</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>33.67</td>
<td>5.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>23.85</td>
<td>7.31</td>
<td>.094</td>
<td>.926</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>34.50</td>
<td>7.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>0.38</td>
<td>7.59</td>
<td>-.116</td>
<td>.909</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>0.83</td>
<td>8.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i) M = Mean
ii) SD = Standard Deviation
iii) T = Test Statistics
iv) p = p-value
NA의 상관관계를 분석한 결과 유의한 차이가 없는 것으로 나타났다(Table 10).

7. H-B Grade와 NA의 비교

H-B Grade에 따라 NA가 일정하게 변하는지를 확인하기 위해 상관관계를 확인한 결과 유의한 차이가 없는 것으로 나타났다(Table 11).

8. Kim’s Grade와 NA의 비교

Kim’s Grade를 이용하여 NA에 영향을 줄 수 있는 개별 근육과 NA와의 상관관계를 확인하였다. 개별 근육 중 Zygomatic Group I에 따른 NA의 차이를 분석한 결과, 무표정상태와 표정을 유도한 상태 모두에서 유의한 차이(p=0.001<0.01)가 나타났으며, Zygomatic Group II의 마비도가 0일 경우 성장측보다 환측의 NA가 더 크게 나왔다(Table 12).

Zygomatic Group II와 Orbicularis oris muscle 마비도의 합과 Zygomatic Group I의 마비도 차이가 무표정 상태의 NA 차이(환측-정상측)에 미치는 영향을 분석한 결과, 유의한 영향을 주는 것으로 나타났다(p=0.011<0.05). 또한 그 차자가 금 수록 NA가 정상측보다 환측이 더 커지는 것으로 나타났다. 그러나 표정을 유도한 상태에서는 유의한 영향을 주지 않았다(Table 13).

Table 12. The Correlation between NA with Zygomatic Major Muscle

<table>
<thead>
<tr>
<th>NA of Expressionless face</th>
<th>Zygomatic Group I</th>
<th>M(1)</th>
<th>SD(2)</th>
<th>T(3)</th>
<th>p(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>4.08</td>
<td>2.61</td>
<td>3.840</td>
<td>0.001</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>3.50</td>
<td>6.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NA of Expression face</th>
<th></th>
<th>4.67</th>
<th>4.03</th>
<th>4.229</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>5.75</td>
<td>7.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

i) M = Mean
ii) SD = Standard Deviation
iii) T = Test Statistics
iv) p = p-value

Table 13. The Correlation between a Gap of NA with a Gap of Muscles Score

<table>
<thead>
<tr>
<th>B(1)</th>
<th>SE(2)</th>
<th>β(3)</th>
<th>T(4)</th>
<th>p(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.667</td>
<td>2.282</td>
<td>-2.045</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Gap of muscles score*</td>
<td>2.333</td>
<td>0.820</td>
<td>0.557</td>
<td>2.847</td>
</tr>
<tr>
<td>R²(6)</td>
<td>0.310</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F(7)</td>
<td>8.104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p(8)</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gap of Muscles Score = Zygomatic Group I score - Zygomatic Group II score + Orbicularis oris muscle score

i) B = Unstandardized Coefficients
ii) SE = Standard Error
iii) β = Standardized Coefficients
iv) T = Test Statistics
v) p = p-value
vi) R² = The Coefficient of Determination
vii) F = F-test Test Statistics
9. ENoG와 NA의 비교

ENoG의 회복율과 NA간의 상관관계를 분석한 결과 유의한 차이가 없는 것으로 나타났다(Table 14).

<table>
<thead>
<tr>
<th>ENoG</th>
<th>Expressionless face</th>
<th>Expression face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal alae</td>
<td>Normal side: 0.449</td>
<td>Abnormal side: -0.438</td>
</tr>
<tr>
<td>Nasolabial fold</td>
<td>Gap of both sides: -0.631</td>
<td>Normal side: -0.126</td>
</tr>
<tr>
<td>Orbicularis oris</td>
<td>Gap of both sides: 0.029</td>
<td>Normal side: -0.377</td>
</tr>
</tbody>
</table>

요한 안면부의 마비는 환자에게 많은 고통을 준다. 따라서 안면신경마비에 대한 정확한 진단과 예후에 대한 판단 및 조기치료가 중요하며, 이에 대한 관심이 증대되고 있다[8,19,20].

한의학에서 안면신경마비에 사용되는 치료법으로 치침과 병행하여 마비된 신경과 근육의 회복을 위해 침전기자극술 등을 시행한다[8].

따라서 표저근 불균형이 있는 환자에게 침전기자극술은 효과적으로 사용하기 위해서는 불완전하게 회복된 안면의 마비 근육을 파악하는 것이 중요하다. 이에 H-B grade와 Kim's grade를 이용하여 표저근의 마비정도를 파악하고, 표저근의 불균형 정도를 파악하기 위해 nasolabial angle(NA)

고찰

 안면신경마비는 한의학에서 구안의사에 해당하며, 안면부의 편측 표정근과 안검 및 편측 운동장애 및 지각장애를 수반하는 일종의 증상으로, 그 원인은 대개 흉부의 부족하고 혈관이 축소하여 혈관이 침범하지 못한 가운데 마른 두부의 혈액이 안면의 혈관을 침범하여 혈액순환의 장애로 혈액이 농축되지 못하고 혈관의 혈관을 받지 못하며 근육이 편전되지 복잡하게 발생한다[6,7].

안면신경마비 환자의 치료 목적은 안면신경마비로부터의 완전한 회복이다. 즉 안면부 근육의 운동장애를 정상적으로 회복시키는 것으로, 전도 장애로부터 회복, 복면의 정방, 안면신경 재생 촉진 등이다[8].

일단 안면마비가 발생하면 환자들은 원래의 얼굴모양을 유지하기 어려울 뿐 아니라 말을 하거나 감정을 표현할 때 얼굴의 변형이 더 심해지기 때문에 그 경과에 따라 가능적 측면, 미용적 측면, 정신적 측면, 나아가 일상적 사회생활까지도 심각한 장애를 미칠 수 있다. 또한 첫인상의 중요성이 더욱 커지는 현대 사회에서 외관상 가장 중
음인환의 기능: Nasolabial Angle 관찰을 통한 구인화와 후유증의 표정근 불균형에 대한 일상적 고찰 (555)

141

을 측정하였으며, 일부 환자에서는 불완전하게 회복된 마비 근육에 ENoG 검사를 시행하여 비교분석하였다.

연구대상은 2007년 10월 1일 현재 OO한방병원 안이비인후과부과에 안면신경마비로 치료중인 환자 중 발병 2개월 이상 경과하였으며, 표정근 불균형이 육안적으로 관찰되는 환자 총 20명을 대상으로 실시하였다.

NA 측정 결과 무표정 상태에서 마비근이 정상 측보다 각이 큰 경우가 7명(35%), 정상근이 마비근 측보다 각이 큰 경우가 11명(55%), 마비 근과 정상근의 각이 같은 경우가 2명(10%)이었으며, 이 받음을 실시하여 NA 주변 근육의 음직임을 유발시킨 후 측정한 결과에서는 총 20명중 마비근이 정상측보다 각이 큰 경우가 7명(35%), 정상근이 마비근 측보다 각이 큰 경우가 10명(50%), 마비근과 정상측의 각이 같은 경우가 3명(15%)이었다.

NA 형성에 영향을 미치는 인자를 살펴보기 위해 안면마비 유병기간에 따른 NA의 변화, H-B Grade 정도에 따른 NA의 변화, ENoG검사상 회복율에 따른 NA의 변화를 분석한 결과 유의한 차이가 없는 것으로 나타났다.

그러나 Kim's Grade를 통해 측정한 개별 근육과 NA와의 상관관계에서는 다음과 같은 유의한 결과를 얻었다. Zygomatic Group I에 따른 NA의 차이를 분석한 결과, 무표정상태와 표정을 유도한 상태 모두에서 유의한 차이(p=0.001<0.01)가 나타났으며, Zygomatic Group I의 마비도가 0일 경우 정상측보다 환측의 NA가 더 크게 나왔다(Table 12). 또한 Zygomatic Group II와 Orbicularis oris muscle의 마비도 합과 Zygomatic Group I의 마비도 차이가 무표정 상태의 NA 차이(환측정상측)에 미치는 영향을 분석한 결과 유의한 영향을 주는 것으로 나타났으며(p=0.011<0.05), 그 차이가 측정적 정상측보다 환측이 더 커지는 것으로 분석되었다(Table 13). 즉 Zygomatic Group I의 마비도가 적고, Zygomatic Group II와 Orbicularis oris muscle의 마비도가 클수록 정상측과 환측의 NA차이가 커짐을 알 수 있다.

이상의 결과를 볼 때, 안면신경마비 후유증에서 NA차이로 판찰된 표정근 불균형은 Zygomatic Group I, Zygomatic Group II, Orbicularis oris muscle의 마비도에 따라 결정됨을 알 수 있다.

안면신경마비의 평가로 현재 총괄법 중 대표적으로 사용되고 있는 H-B grade는 전체적인 안면마비와 이차적 동반증상들을 동시에 평가하여 환자 상태 파악에 다는 점점이 있는 반면에 개별적인 근육에 대한 파악이 어렵다는 단점이 있다. 또한 일본에서 사용하는 무위법 중 하나인 Yanagihara grading system은 이마의 주름, 눈꺼풀의 정도, 코를 정그리는 정도 등 안면부의 개별적인 능력을 파악할 수 있지만 개별적인 표정근의 마비도를 평가하는 데는 어려운 점이다.23)

안면신경마비에서의 전침의 사용은 마비된 신경 근육을 회복시키려는 의도이다.24) 그러므로 표정근 불균형이 있는 안면신경마비 후유증 환자에게 전침요법을 적용하기 위해서는 마비된 근육의 확인이 중요하다. 본 연구는 NA 관찰을 통한 입 주변의 표정근 불균형 마비근육의 확인을 위해 이루어졌으며, 환후 불완전하게 회복된 마비 근육에 침전기자극을 시행하여 표정근 불균형을 치료할 수 있는 근거가 될 수 있을 것으로 사료된다.

그러나 본 연구에서 제외된 전두부와 안부의 근육 마비도 평가에 대한 추가적인 연구가 필요하며, 환후 본 연구 결과를 토대로 임상에서 치료하여 그 효과를 검증하는 것이 필요할 것으로 사료된다.

결론

2007년 10월 1일 현재 원광대성방범병원 안이비인후외과에 안면신경마비로 치료중인 환자
중 발병 2개월 이상 경과 되었으며, 표정근 불균형이 우안적으로 관찰되는 화자 중 20명을 대상으로 NA, H-B Grade, Kim's Grade, ENoG 등의 상관관계를 분석하여 다음과 같은 결과를 얻었다.
1. 안면마비 유병기간과 NA의 상관관계에서는 유의한 차이가 없었다.
3. ENoG의 회복율과 NA의 상관관계에서는 유의한 차이가 없었다.
4. 표정근 중 Zygomatic Group I (Zygomatic major muscle and Levator anguli oris), Zygomatic Group II (Zygomatic minor muscle and Levator labii superior), Orbicularis oris muscle의 마비도에 따라 NA는 유의한 변화를 나타냈다.

참고문헌

15. 윤종태, 김한성. 구안와사에 있어서 전기검사 검사법의 유효성에 대한 문헌고찰. 대한대학교 한국의학연구소 논문집. 2006;9(1):259-266.

